滴滴治理算法探索与实践
桔妹导读:13年以后,以外卖、网约车、房产销售为主的O2O平台,极大的改变了社会的运行模式。相比前一代互联网公司,这一代互联网公司都面临着人与人的线下交互,因此在体验、治理上也带来了新的挑战。在滴滴,经过多年的耕耘,我们探索了一套功能强大的治理算法系统,围绕司乘体验提升的核心目标进行了全方位的探索和落地。
其中,按照治理对象,分成订单维度治理、人维度治理。
订单维度治理,主要指在订单全生命周期中,在异常发生前、发生初、发生时、发生后,平台的治理行为。
人维度治理,指在司机、乘客在平台的全生命周期中的综合治理行为,主要的抓手是司机服务分、教育、管控的一整套方案。
考虑到体验异常相关因素较多,相对比较高频,订单维度治理的应用相对更广,挑战也更大。本文讨论的治理算法主要针对该部分。
治理算法,作为O2O背景下新的算法方向,有如下的挑战。
第三个挑战则是多模态特征。通过完备的场景还原能力来做干预、判责等,需要用到订单、时空、司乘统计特征之外,也要参考司乘的沟通信息(比如司乘是否指路)、协商投诉文本(各自的表述)、以及桔视特征(比如多人分段上下车等)。是否能高效、综合的利用更多的多媒体信息,对工程、算法而言都是巨大的挑战。
3.
纠纷发生前与发生初的降发生方案,比如当司机提前计费时,触发实时干预等;
纠纷发生时的智能受理方案,如在司机账单发送时刻,平台精准识别未坐车收费问题订单,智能触发司乘协商流程,能帮助乘客主动解决纠纷问题;
纠纷发生后的管控判责和补偿方案。通过建设智能判责能力,能落地如服务分扣除、补款、罚款等方案,对纠纷问题做合理的调解与治理。
成熟的在线服务引擎。其中策略流程引擎有效支持了策略流程的可视化配置管理;模型引擎有效支持了LR、XGB、DNN等一系列模型的在线部署与预测服务;规则引擎通过在线解析基于DSL的规则描述语言,有效降低了策略规则的迭代成本。
策略基础能力库。沉淀了一套字、词、句等多粒度的文本算法工具箱,拓展了治理算法的技术空间与业务价值。同时建设了离线策略数据仓库,实现业务数据、链路数据、策略数据的体系化治理与整合。为业务落地与策略迭代提供了高质量、高可用的数据。
在线与离线相结合的标注工作台,承载了滴滴治理算法的标注需求。策略RD离 线灌入抽样样本,质检标注团队在线标注做单,保障了模型样本的大规模与高质量产出。通过T+1模型更新系统,引入模型自动化更新机制,解决了在线模型的效果衰退问题。
▍4.1 小样本学习
step1 用已有的标签数据作为初始训练集,训练得到一个初始分类器模型;
step2 利用初始分类器模型,对剩下的还未标记的数据打标签,选出高置信度的样本加入已有标签数据集中,从而扩充训练样本集;
step3 根据新的训练样本集训练新的分类器。重复step1~step2直到满足预设停止条件(如样本量达到预期量级等)
优化点1:采用ESMM结构。ESMM模型结构恰好适配于拦截的业务场景。该优化点一定程度上解决样本偏差问题;实现MTL结构。 优化点2:连续特征离散化,离散特征embedding。该优化点从数据特征工程层面优化,来提升模型的性能。特征离散化有利于NN模型的迭代和性能的提升,通过卡方分箱将订单特征中的连续形特征离散化;同时将原始的离散特征与分箱后的离散特征进行多特征域的embedding 优化点3:多模型融合,融合行程中录音ASR特征的指路语义特征。该优化点加入场景强特征,进一步提升模型效果。具体操作方法是:行程中录音能够有效地识别指路等行为,将ASR文本特征训练的指路模型的中间向量输出作为绕路拦截模型的输入。
实验结果证明,多任务学习的方式能够有效地学习到投诉任务的特点,更好地辅助有责任务的学习,效果远优于单任务的模型。通过辅助任务的引入缓解了标注样本较少的问题,在策略生效点ESMM新模型的召回提升较为显著:相比线上的xgb模型,准确率提升0.6pp,召回率显著提升4.2pp;相比硬共享的多任务学习准确率提升0.2pp,召回率提升1.1pp。后续的A/B实验中取得了不错的线上业务效果。
在滴滴平台上,滴滴智能安全车载设备桔视已经覆盖超过50%的网约车订单,另外每个司机的手机都在进行全程的行程中录音,再配合全流程的轨迹信息,整体在场景还原上提供了非常丰富的多媒体能力。而多模态特征的应用,有通过端到端的框架联合训练、以及通过设计两阶段模型来应用的两种方案。
▍5.3 流式特征探索
在特征形态上,我们基于线上的流式数据,如行程中的轨迹流、录音流、视频流等数据做了一些流式语义特征的挖掘。这里主要介绍轨迹流相关的技术方案。
轨迹信息的提取和利用对于纠纷治理业务有较大的价值,而目前对于轨迹信息的处理局限于提取距离差、速度等简单特征,信息损失大,故需探索轨迹的价值。
技术选型主要分为两大类:无监督(自监督)的表示学习方案和有监督的子网络嵌入方式。我们的实验探索主要基于后者展开。
有监督的子网络嵌入方案的建模流程如下。序列模型部分,我们主要尝试了主流的LSTM模型,整体模型AUC效果上:Bi-LSTM > Vanilla-LSTM > Stacked-LSTM。
6. 总结
治理算法是一个全新的领域,是随着O2O平台兴起以来,在线上线下治理、管控需求下新起的一个策略算法方向。在过去的几年,团队在NPS、CPO等公司核心关注的体验指标上,都取得了很好的业务收益;在技术体系上也有了相对深入的积累。
团队招聘
▬
团队目前热招高级Java工程师、go后端研发工程师等技术岗位中,欢迎有兴趣的小伙伴加入,可投递简历至 diditech@didiglobal.com,邮件请邮件主题请命名为「姓名-投递岗位-投递团队」。
扫码了解更多岗位
作者
▬